kafka安装和启动

半兽人 发表于: 2015-02-07   最后更新时间: 2018-05-02  
  •   267 订阅,79040 游览

kafka的背景知识已经讲了很多了,让我们现在开始实践吧,假设你现在没有KafkaZooKeeper环境。

Step 1: 下载代码

下载1.1.0版本并且解压它。

> tar -xzf kafka_2.11-1.1.0.tgz
> cd kafka_2.11-1.1.0

Step 2: 启动服务

运行kafka需要使用Zookeeper,所以你需要先启动Zookeeper,如果你没有Zookeeper,你可以使用kafka自带打包和配置好的Zookeeper。

> bin/zookeeper-server-start.sh config/zookeeper.properties
[2013-04-22 15:01:37,495] INFO Reading configuration from: config/zookeeper.properties (org.apache.zookeeper.server.quorum.QuorumPeerConfig)
...

现在启动kafka服务

> bin/kafka-server-start.sh config/server.properties &
[2013-04-22 15:01:47,028] INFO Verifying properties (kafka.utils.VerifiableProperties)
[2013-04-22 15:01:47,051] INFO Property socket.send.buffer.bytes is overridden to 1048576 (kafka.utils.VerifiableProperties)
...

Step 3: 创建一个主题(topic)

创建一个名为“test”的Topic,只有一个分区和一个备份:

> bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test

创建好之后,可以通过运行以下命令,查看已创建的topic信息:

> bin/kafka-topics.sh --list --zookeeper localhost:2181
test

或者,除了手工创建topic外,你也可以配置你的broker,当发布一个不存在的topic时自动创建topic。

Step 4: 发送消息

Kafka提供了一个命令行的工具,可以从输入文件或者命令行中读取消息并发送给Kafka集群。每一行是一条消息。
运行producer(生产者),然后在控制台输入几条消息到服务器。

> bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test 
This is a message
This is another message

Step 5: 消费消息

Kafka也提供了一个消费消息的命令行工具,将存储的信息输出出来。

> bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic test --from-beginning
This is a message
This is another message

如果你有2台不同的终端上运行上述命令,那么当你在运行生产者时,消费者就能消费到生产者发送的消息。

Step 6: 设置多个broker集群

到目前,我们只是单一的运行一个broker,没什么意思。对于Kafka,一个broker仅仅只是一个集群的大小,所有让我们多设几个broker。

首先为每个broker创建一个配置文件:

> cp config/server.properties config/server-1.properties 
> cp config/server.properties config/server-2.properties

现在编辑这些新建的文件,设置以下属性:

config/server-1.properties: 
    broker.id=1 
    listeners=PLAINTEXT://:9093 
    log.dir=/tmp/kafka-logs-1

config/server-2.properties: 
    broker.id=2 
    listeners=PLAINTEXT://:9094 
    log.dir=/tmp/kafka-logs-2

broker.id是集群中每个节点的唯一且永久的名称,我们修改端口和日志目录是因为我们现在在同一台机器上运行,我们要防止broker在同一端口上注册和覆盖对方的数据。

我们已经运行了zookeeper和刚才的一个kafka节点,所有我们只需要在启动2个新的kafka节点。

> bin/kafka-server-start.sh config/server-1.properties &
... 
> bin/kafka-server-start.sh config/server-2.properties &
...

现在,我们创建一个新topic,把备份设置为:3

> bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 3 --partitions 1 --topic my-replicated-topic

好了,现在我们已经有了一个集群了,我们怎么知道每个集群在做什么呢?运行命令“describe topics”

> bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic my-replicated-topic
Topic:my-replicated-topic    PartitionCount:1    ReplicationFactor:3    Configs:
Topic: my-replicated-topic    Partition: 0    Leader: 1    Replicas: 1,2,0    Isr: 1,2,0

输出解释:第一行是所有分区的摘要,其次,每一行提供一个分区信息,因为我们只有一个分区,所以只有一行。

  • "leader":该节点负责该分区的所有的读和写,每个节点的leader都是随机选择的。
  • "replicas":备份的节点列表,无论该节点是否是leader或者目前是否还活着,只是显示。
  • "isr":“同步备份”的节点列表,也就是活着的节点并且正在同步leader。

我们运行这个命令,看看一开始我们创建的那个节点:

> bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic test
Topic:test    PartitionCount:1    ReplicationFactor:1    Configs:
Topic: test    Partition: 0    Leader: 0    Replicas: 0    Isr: 0

这并不奇怪,刚才创建的主题没有Replicas,并且在服务器“0”上,我们创建它的时候,集群中只有一个服务器,所以是“0”。

让我们来发布一些信息在新的topic上:

> bin/kafka-console-producer.sh --broker-list localhost:9092 --topic my-replicated-topic
 ...
my test message 1
my test message 2
^C

现在,消费这些消息。

> bin/kafka-console-consumer.sh --zookeeper localhost:2181 --from-beginning --topic my-replicated-topic
 ...
my test message 1
my test message 2
^C

我们要测试集群的容错,kill掉leader,Broker1作为当前的leader,也就是kill掉Broker1。

> ps | grep server-1.properties
7564 ttys002    0:15.91 /System/Library/Frameworks/JavaVM.framework/Versions/1.6/Home/bin/java... 
> kill -9 7564

在Windows上使用:

> wmic process where "caption = 'java.exe' and commandline like '%server-1.properties%'" get processid
ProcessId
6016
> taskkill /pid 6016 /f

备份节点之一成为新的leader,而broker1已经不在同步备份集合里了。

> bin/kafka-topics.sh --describe --zookeeper localhost:2181 --topic my-replicated-topic
Topic:my-replicated-topic    PartitionCount:1    ReplicationFactor:3    Configs:
Topic: my-replicated-topic    Partition: 0    Leader: 2    Replicas: 1,2,0    Isr: 2,0

但是,消息仍然没丢:

> bin/kafka-console-consumer.sh --zookeeper localhost:2181 --from-beginning --topic my-replicated-topic
...
my test message 1
my test message 2
^C

Step 7: 使用 Kafka Connect 来 导入/导出 数据

从控制台写入和写回数据是一个方便的开始,但你可能想要从其他来源导入或导出数据到其他系统。对于大多数系统,可以使用kafka Connect,而不需要编写自定义集成代码。

Kafka Connect是导入和导出数据的一个工具。它是一个可扩展的工具,运行连接器,实现与自定义的逻辑的外部系统交互。在这个快速入门里,我们将看到如何运行Kafka Connect用简单的连接器从文件导入数据到Kafka主题,再从Kafka主题导出数据到文件。

首先,我们首先创建一些“种子”数据用来测试,(ps:种子的意思就是造一些消息,片友秒懂?):

echo -e "foo\nbar" > test.txt

windowns上:

> echo foo> test.txt
> echo bar>> test.txt

接下来,我们开始2个连接器运行在独立的模式,这意味着它们运行在一个单一的,本地的,专用的进程。我们提供3个配置文件作为参数。首先是Kafka Connect处理的配置,包含常见的配置,例如要连接的Kafka broker和数据的序列化格式。其余的配置文件都指定了要创建的连接器。包括连接器唯一名称,和要实例化的连接器类。以及连接器所需的任何其他配置。

> bin/connect-standalone.sh config/connect-standalone.properties config/connect-file-source.properties config/connect-file-sink.properties

kafka附带了这些示例的配置文件,并且使用了刚才我们搭建的本地集群配置并创建了2个连接器:第一个是源连接器,从输入文件中读取并发布到Kafka主题中,第二个是接收连接器,从kafka主题读取消息输出到外部文件。

在启动过程中,你会看到一些日志消息,包括一些连接器实例化的说明。一旦kafka Connect进程已经开始,导入连接器应该读取从

test.txt

和写入到topic

connect-test

,导出连接器从主题

connect-test

读取消息写入到文件

test.sink.txt

. 我们可以通过验证输出文件的内容来验证数据数据已经全部导出:

more test.sink.txt
 foo
 bar

注意,导入的数据也已经在Kafka主题

connect-test

里,所以我们可以使用该命令查看这个主题:

bin/kafka-console-consumer.sh --zookeeper localhost:2181 --topic connect-test --from-beginning
 {"schema":{"type":"string","optional":false},"payload":"foo"}
{"schema":{"type":"string","optional":false},"payload":"bar"}
...

连接器继续处理数据,因此我们可以添加数据到文件并通过管道移动:

echo "Another line" >> test.txt

你应该会看到出现在消费者控台输出一行信息并导出到文件。

Step 8: 使用Kafka Stream来处理数据

Kafka Stream是kafka的客户端库,用于实时流处理和分析存储在kafka broker的数据,这个快速入门示例将演示如何运行一个流应用程序。一个WordCountDemo的例子(为了方便阅读,使用的是java8 lambda表达式)

KTable wordCounts = textLines
    // Split each text line, by whitespace, into words.
    .flatMapValues(value -> Arrays.asList(value.toLowerCase().split("W+")))

    // Ensure the words are available as record keys for the next aggregate operation.
    .map((key, value) -> new KeyValue<>(value, value))

    // Count the occurrences of each word (record key) and store the results into a table named "Counts".
    .countByKey("Counts")

它实现了wordcount算法,从输入的文本计算出一个词出现的次数。然而,不像其他的WordCount的例子,你可能会看到,在有限的数据之前,执行的演示应用程序的行为略有不同,因为它的目的是在一个无限的操作,数据流。类似的有界变量,它是一种动态算法,跟踪和更新的单词计数。然而,由于它必须假设潜在的无界输入数据,它会定期输出其当前状态和结果,同时继续处理更多的数据,因为它不知道什么时候它处理过的“所有”的输入数据。

现在准备输入数据到kafka的topic中,随后kafka Stream应用处理这个topic的数据。

> echo -e "all streams lead to kafka\nhello kafka streams\njoin kafka summit" > file-input.txt

接下来,使用控制台的producer 将输入的数据发送到指定的topic(streams-file-input)中,(在实践中,stream数据可能会持续流入,其中kafka的应用将启动并运行)

> bin/kafka-topics.sh --create \
            --zookeeper localhost:2181 \
            --replication-factor 1 \
            --partitions 1 \
            --topic streams-file-input
> cat /tmp/file-input.txt | ./bin/kafka-console-producer --broker-list localhost:9092 --topic streams-file-input

现在,我们运行 WordCount 处理输入的数据:

> ./bin/kafka-run-class org.apache.kafka.streams.examples.wordcount.WordCountDemo

不会有任何的STDOUT输出,除了日志,结果不断地写回另一个topic(streams-wordcount-output),demo运行几秒,然后,不像典型的流处理应用程序,自动终止。

现在我们检查WordCountDemo应用,从输出的topic读取。

> ./bin/kafka-console-consumer --zookeeper localhost:2181 
            --topic streams-wordcount-output 
            --from-beginning 
            --formatter kafka.tools.DefaultMessageFormatter 
            --property print.key=true 
            --property print.key=true 
            --property key.deserializer=org.apache.kafka.common.serialization.StringDeserializer 
            --property value.deserializer=org.apache.kafka.common.serialization.LongDeserializer

输出数据打印到控台(你可以使用Ctrl-C停止):

all     1
streams 1
lead    1
to      1
kafka   1
hello   1
kafka   2
streams 2
join    1
kafka   3
summit  1
^C

第一列是message的key,第二列是message的value,要注意,输出的实际是一个连续的更新流,其中每条数据(即:原始输出的每行)是一个单词的最新的count,又叫记录键“kafka”。对于同一个key有多个记录,每个记录之后是前一个的更新。







发表于: 1年前   最后更新时间: 2月前   游览量:79040
上一条: Kafka的使用场景
下一条: Kafka Broker配置(0.10版)

评论…


  • 大神,kafka启动报这个错什么原因啊,怎么解决呢
    [2018-06-29 10:29:23,972] ERROR [ReplicaFetcherThread-0-2]: Error for partition [testimf,0] to broker 2:org.apache.kafka.common.errors.NotLeaderForPartitionException: This server is not the leader for that topic-partition. (kafka.server.ReplicaFetcherThread)
    大神,我也遇到这个问题了,这个怎么解决?
    我在同一台机器上启动第2个broker 的时候报错了,是什么情况?
    错误: 代理抛出异常错误: java.rmi.server.ExportException: Port already in use: 9999; nested exception is:
     java.net.BindException: 地址已在使用 (Bind failed)
    • 是被占用了,*server-start.sh里面有个函数写死了,有没有方法让启动时可以自动分配端口,而不是手动分配?我看网上都是说自己分配个端口
        group.initial.rebalance.delay.ms=0[root@iZuf692ot9nf1r9fn1unojZ kafka_2.12-1.1.0]# bin/zookeeper-server-start.sh  config/server.properties.bak20180430 
        [2018-05-02 19:47:01,914] INFO Reading configuration from: config/server.properties.bak20180430 (org.apache.zookeeper.server.quorum.QuorumPeerConfig)
        [2018-05-02 19:47:01,921] ERROR Invalid config, exiting abnormally (org.apache.zookeeper.server.quorum.QuorumPeerMain)
        org.apache.zookeeper.server.quorum.QuorumPeerConfig$ConfigException: Error processing config/server.properties.bak20180430
                at org.apache.zookeeper.server.quorum.QuorumPeerConfig.parse(QuorumPeerConfig.java:154)
                at org.apache.zookeeper.server.quorum.QuorumPeerMain.initializeAndRun(QuorumPeerMain.java:101)
                at org.apache.zookeeper.server.quorum.QuorumPeerMain.main(QuorumPeerMain.java:78)
        Caused by: java.lang.NumberFormatException: For input string: "initial.rebalance.delay.ms"
                at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
                at java.lang.Long.parseLong(Long.java:589)
                at java.lang.Long.parseLong(Long.java:631)
                at org.apache.zookeeper.server.quorum.QuorumPeerConfig.parseProperties(QuorumPeerConfig.java:242)
                at org.apache.zookeeper.server.quorum.QuorumPeerConfig.parse(QuorumPeerConfig.java:150)
                ... 2 more
        Invalid config, exiting abnormally
        这个是什么错误造成的的。就没改过的就突然报这个错误。很无语。initial.rebalance.delay.ms默认参数都没更改过。
        • 你好,谢谢回复,但是我还是很明白你说的错误原因。格式化转化错误,你说的是我的配置文件名称格式错误嘛?还是里面的个配置项的格式错误。准确的说,我重启了下服务器,然后就报这个错误了。
            • 问题在于,这个参数我并没有更改。即使我现在改成3还是错误;附配置文件.
              zookeeper.connect=localhost:2181

              # Timeout in ms for connecting to zookeeper
              zookeeper.connection.timeout.ms=6000

              ############################# Group Coordinator Settings #############################

              # The following configuration specifies the time, in milliseconds, that the GroupCoordinator will delay the initial consumer rebalance.
              # The rebalance will be further delayed by the value of group.initial.rebalance.delay.ms as new members join the group, up to a maximum of max.poll.interval.ms.
              # The default value for this is 3 seconds.
              # We override this to 0 here as it makes for a better out-of-the-box experience for development and testing.
              # However, in production environments the default value of 3 seconds is more suitable as this will help to avoid unnecessary, and potentially expensive, rebalances during application startup.
              group.initial.rebalance.delay.ms=3
                搭建集群时,为啥zookeeper只有一个,不需要和kafka一一对应吗?比如kafka启动3个,zookooper也配置成3个,1:1的关系?
                Step 8: 使用Kafka Stream来处理数据
                里面的java的例子怎么跑起来
                文中的集群情况下,不需要再重新配置ZK么?
                • 我又仔细看了一遍,在同一个KAFKA目录下,复制了两个server.properties文件,然后做了启动,是不是这种情况ZK能动态发现。如果 我是不同的服务器,是不是就要修改ZK配置了
                    Step 5: 消费消息
                    Kafka也提供了一个消费消息的命令行工具,将存储的信息输出出来。

                    新版已经不再支持 zk方式
                    我想问一下,windows环境下要怎么运行这些命令
                     Topic: UserInfo Partition: 0 Leader: 0 Replicas: 0,1 Isr: 0
                     Topic: UserInfo Partition: 1 Leader: 1 Replicas: 1,2 Isr: 1,2
                     Topic: UserInfo        Partition: 2 Leader: 2 Replicas: 2,0 Isr: 2,0
                    分区 0 存活的节点为什么少了 1,从分区 1 来看 1节点是存活的啊,这是为什么?
                    你好,我有个问题。当我们建立好集群后为了验证Kafka的容错能力,我们 kill 掉了broker-1. 我注意到我们通过consumer来收消息的时候是通过ZK来收消息的,但是我们通过producer来发消息的时候我们只直接指定了broker-0的地址来发消息的。假如我们kill掉的是broker-0那么这消息肯定是发不出的。那我可以理解为consumer是有容错能力的而producer是没有容错能力的?还是这只是个例子,在production的情况下,producer也需要通过连ZK来决定发送给哪个broker?
                    • bin/kafka-console-producer.sh --broker-list localhost:9092 localhost:9093 localhost:9094 --topic my-replicated-topic
                      • 评论…
                        • in this conversation
                          提问