半兽人 发表于: 2015-03-10   最后更新时间: 2015-06-23  
  •   40 订阅,3643 游览

6.6 Monitoring

Kafka uses Yammer Metrics for metrics reporting in both the server and the client. This can be configured to report stats using pluggable stats reporters to hook up to your monitoring system.

The easiest way to see the available metrics to fire up jconsole and point it at a running kafka client or server; this will all browsing all metrics with JMX.

We pay particular we do graphing and alerting on the following metrics:

Description Mbean name Normal value
Message in rate kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec
Byte in rate kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec
Request rate kafka.network:type=RequestMetrics,name=RequestsPerSec,request={Produce|FetchConsumer|FetchFollower}
Byte out rate kafka.server:type=BrokerTopicMetrics,name=BytesOutPerSec
Log flush rate and time kafka.log:type=LogFlushStats,name=LogFlushRateAndTimeMs
# of under replicated partitions (|ISR| < |all replicas|) kafka.server:type=ReplicaManager,name=UnderReplicatedPartitions 0
Is controller active on broker kafka.controller:type=KafkaController,name=ActiveControllerCount only one broker in the cluster should have 1
Leader election rate kafka.controller:type=ControllerStats,name=LeaderElectionRateAndTimeMs non-zero when there are broker failures
Unclean leader election rate kafka.controller:type=ControllerStats,name=UncleanLeaderElectionsPerSec 0
Partition counts kafka.server:type=ReplicaManager,name=PartitionCount mostly even across brokers
Leader replica counts kafka.server:type=ReplicaManager,name=LeaderCount mostly even across brokers
ISR shrink rate kafka.server:type=ReplicaManager,name=IsrShrinksPerSec If a broker goes down, ISR for some of the partitions will shrink. When that broker is up again, ISR will be expanded once the replicas are fully caught up. Other than that, the expected value for both ISR shrink rate and expansion rate is 0.
ISR expansion rate kafka.server:type=ReplicaManager,name=IsrExpandsPerSec See above
Max lag in messages btw follower and leader replicas kafka.server:type=ReplicaFetcherManager,name=MaxLag,clientId=Replica < replica.lag.max.messages
Lag in messages per follower replica kafka.server:type=FetcherLagMetrics,name=ConsumerLag,clientId=([-.\w]+),topic=([-.\w]+),partition=([0-9]+) < replica.lag.max.messages
Requests waiting in the producer purgatory kafka.server:type=ProducerRequestPurgatory,name=PurgatorySize non-zero if ack=-1 is used
Requests waiting in the fetch purgatory kafka.server:type=FetchRequestPurgatory,name=PurgatorySize size depends on fetch.wait.max.ms in the consumer
Request total time kafka.network:type=RequestMetrics,name=TotalTimeMs,request={Produce|FetchConsumer|FetchFollower} broken into queue, local, remote and response send time
Time the request waiting in the request queue kafka.network:type=RequestMetrics,name=QueueTimeMs,request={Produce|FetchConsumer|FetchFollower}
Time the request being processed at the leader kafka.network:type=RequestMetrics,name=LocalTimeMs,request={Produce|FetchConsumer|FetchFollower}
Time the request waits for the follower kafka.network:type=RequestMetrics,name=RemoteTimeMs,request={Produce|FetchConsumer|FetchFollower} non-zero for produce requests when ack=-1
Time to send the response kafka.network:type=RequestMetrics,name=ResponseSendTimeMs,request={Produce|FetchConsumer|FetchFollower}
Number of messages the consumer lags behind the producer by kafka.consumer:type=ConsumerFetcherManager,name=MaxLag,clientId=([-.\w]+)
The average fraction of time the network processors are idle kafka.network:type=SocketServer,name=NetworkProcessorAvgIdlePercent between 0 and 1, ideally > 0.3
The average fraction of time the request handler threads are idle kafka.server:type=KafkaRequestHandlerPool,name=RequestHandlerAvgIdlePercent between 0 and 1, ideally > 0.3

发表于: 1年前   最后更新时间: 1年前   游览量:3643
上一条: kafka的Java版本
下一条: kafka新生产监控

  • 评论…
    • in this conversation