1、kafka版本为kafka_2.11-2.2.1
2、问题是开启事务和关闭事务时生产的offset间隔值不相同。
代码如下
/*
* Copyright 2018-2019 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.example;
import com.common.Foo2;
import org.apache.kafka.clients.admin.NewTopic;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.ApplicationRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.task.SimpleAsyncTaskExecutor;
import org.springframework.core.task.TaskExecutor;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import org.springframework.kafka.support.converter.RecordMessageConverter;
import org.springframework.kafka.support.converter.StringJsonMessageConverter;
import java.util.HashMap;
import java.util.Map;
/**
* Sample shows use of a dead letter topic.
*
* @author Gary Russell
* @since 2.2.1
*
*/
@SpringBootApplication
public class Application {
private final Logger logger = LoggerFactory.getLogger(Application.class);
private final TaskExecutor exec = new SimpleAsyncTaskExecutor();
public static void main(String[] args) {
SpringApplication.run(Application.class, args).close();
}
@Bean
public Map<String,Object> producerConfig() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "10.60.153.252:9092,10.60.153.253:9093");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.springframework.kafka.support.serializer" +
".JsonSerializer");
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.springframework.kafka.support.serializer" +
".JsonSerializer");
props.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, "com.MyPartitioner");
props.put(ProducerConfig.ACKS_CONFIG, "all");
props.put(ProducerConfig.RETRIES_CONFIG, 1);
props.put(ProducerConfig.LINGER_MS_CONFIG, 10);
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 524880);
props.put(ProducerConfig.COMPRESSION_TYPE_CONFIG, "gzip");
return props;
}
@Bean
public ProducerFactory<Object,Object> producerFactory() {
DefaultKafkaProducerFactory<Object,Object> producerFactory =
new DefaultKafkaProducerFactory<>(producerConfig());
producerFactory.transactionCapable();
producerFactory.setTransactionIdPrefix("trans-");
return producerFactory;
}
/*public ProducerFactory<Object, Object> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfig());
}*/
@Bean
public KafkaTemplate<Object, Object> kafkaTemplate(ProducerFactory producerFactory) {
return new KafkaTemplate<Object, Object>(producerFactory);
}
@Bean
public RecordMessageConverter converter() {
return new StringJsonMessageConverter();
}
@KafkaListener(id = "wxyGroup", topics = "topic1")
public void listen(Foo2 foo) {
logger.info("Received: " + foo);
if (foo.getFoo().startsWith("fail")) {
throw new RuntimeException("failed");
}
this.exec.execute(() -> System.out.println("Hit Enter to terminate..."));
}
@KafkaListener(id = "wxyGroup2", topics = "wxy_test")
public void dltListen(String in) {
logger.info("Received from wxy_test: " + in);
this.exec.execute(() -> System.out.println("Hit Enter to terminate..."));
}
@Bean
public NewTopic topic() {
return new NewTopic("topic1", 1, (short) 1);
}
@Bean
public NewTopic dlt() {
return new NewTopic("topic1.DLT", 1, (short) 1);
}
@Bean
public NewTopic newTopic() {
return new NewTopic("wxy_test", 3, (short) 1);
}
@Bean
public ApplicationRunner runner() {
return args -> {
System.out.println("Hit Enter to terminate...");
System.in.read();
};
}
}
此时生产的offset结果是
Kafka Message of topic:wxy_test/size:6/partition:1/offset:231 sends successfully at time:20200612 19:35:50-318!
Kafka Message of topic:wxy_test/size:6/partition:0/offset:133 sends successfully at time:20200612 19:35:53-140!
Received from wxy_test: aaaa
Kafka Message of topic:wxy_test/size:6/partition:0/offset:135 sends successfully at time:20200612 19:35:54-365!
Received from wxy_test: aaaa
Kafka Message of topic:wxy_test/size:6/partition:2/offset:136 sends successfully at time:20200612 19:35:55-667!
Received from wxy_test: aaaa
Kafka Message of topic:wxy_test/size:6/partition:1/offset:233 sends successfully at time:20200612 19:43:53-018!
Received from wxy_test: aaaa
Kafka Message of topic:wxy_test/size:6/partition:0/offset:137 sends successfully at time:20200612 19:43:56-295!
Received from wxy_test: aaaa
Kafka Message of topic:wxy_test/size:6/partition:0/offset:139 sends successfully at time:20200612 19:43:57-380!
Received from wxy_test: aaaa
当我把上述的producerFactory()
方法换成星号引去的方法时(代码如下)
/*
* Copyright 2018-2019 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.example;
import com.common.Foo2;
import org.apache.kafka.clients.admin.NewTopic;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.boot.ApplicationRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;
import org.springframework.core.task.SimpleAsyncTaskExecutor;
import org.springframework.core.task.TaskExecutor;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
import org.springframework.kafka.support.converter.RecordMessageConverter;
import org.springframework.kafka.support.converter.StringJsonMessageConverter;
import java.util.HashMap;
import java.util.Map;
/**
* Sample shows use of a dead letter topic.
*
* @author Gary Russell
* @since 2.2.1
*
*/
@SpringBootApplication
public class Application {
private final Logger logger = LoggerFactory.getLogger(Application.class);
private final TaskExecutor exec = new SimpleAsyncTaskExecutor();
public static void main(String[] args) {
SpringApplication.run(Application.class, args).close();
}
@Bean
public Map<String,Object> producerConfig() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "10.60.153.252:9092,10.60.153.253:9093");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.springframework.kafka.support.serializer" +
".JsonSerializer");
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.springframework.kafka.support.serializer" +
".JsonSerializer");
props.put(ProducerConfig.PARTITIONER_CLASS_CONFIG, "com.MyPartitioner");
props.put(ProducerConfig.ACKS_CONFIG, "all");
props.put(ProducerConfig.RETRIES_CONFIG, 1);
props.put(ProducerConfig.LINGER_MS_CONFIG, 10);
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 524880);
props.put(ProducerConfig.COMPRESSION_TYPE_CONFIG, "gzip");
return props;
}
/*@Bean
public ProducerFactory<Object,Object> producerFactory() {
DefaultKafkaProducerFactory<Object,Object> producerFactory =
new DefaultKafkaProducerFactory<>(producerConfig());
producerFactory.transactionCapable();
producerFactory.setTransactionIdPrefix("trans-");
return producerFactory;
}*/
public ProducerFactory<Object, Object> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfig());
}
@Bean
public KafkaTemplate<Object, Object> kafkaTemplate(ProducerFactory producerFactory) {
return new KafkaTemplate<Object, Object>(producerFactory);
}
@Bean
public RecordMessageConverter converter() {
return new StringJsonMessageConverter();
}
@KafkaListener(id = "wxyGroup", topics = "topic1")
public void listen(Foo2 foo) {
logger.info("Received: " + foo);
if (foo.getFoo().startsWith("fail")) {
throw new RuntimeException("failed");
}
this.exec.execute(() -> System.out.println("Hit Enter to terminate..."));
}
@KafkaListener(id = "wxyGroup2", topics = "wxy_test")
public void dltListen(String in) {
logger.info("Received from wxy_test: " + in);
this.exec.execute(() -> System.out.println("Hit Enter to terminate..."));
}
@Bean
public NewTopic topic() {
return new NewTopic("topic1", 1, (short) 1);
}
@Bean
public NewTopic dlt() {
return new NewTopic("topic1.DLT", 1, (short) 1);
}
@Bean
public NewTopic newTopic() {
return new NewTopic("wxy_test", 3, (short) 1);
}
@Bean
public ApplicationRunner runner() {
return args -> {
System.out.println("Hit Enter to terminate...");
System.in.read();
};
}
}
这时的log如下
2020-06-12 19:56:26.660 INFO 19108 --- [ad | producer-1] com.example.KafkaSendResultHandler : Kafka Message of topic:wxy_test/size:4/partition:0/offset:144 sends successfully at time:20200612 19:56:26-641!
2020-06-12 19:57:31.308 INFO 19108 --- [ad | producer-1] com.example.KafkaSendResultHandler : Kafka Message of topic:wxy_test/size:4/partition:0/offset:145 sends successfully at time:20200612 19:57:31-306!
总之这时每个分区的offset都是连续的。
即开启事务时,offset间隔2,关闭事务后,offset间隔1.这个虽然对最终结果没有影响,但是就是百思不得其解啊。求大神看一下?第一次在orcHome提问题,希望能得到解答。
当你启用
producerFactory.setTransactionIdPrefix("trans-");
。在这种情况下,客户端会启用一个生产者缓存,用于确认kafka集群返回的信息。
我不太清楚springboot提供的kafka客户端是什么机制打印的,我想如果kafka的发送的消息先在缓存中,等待确认,那kafka返回确认的时候,从缓存中踢出(多笔一起踢出),客户端打印的时候,同一时间点,跳过了已经确认过的offset。
你可以加大发送压力,看看offset间隔是否会扩大。
最后,kafka发送有同步发送和异步发送,理论上异步发送都是按批次发的,offset也会间隔的更大才是。 你还是得压一下。
我用jmeter进行了单分区的压力测试,Number of Threads->50、Ramp-up period(in seconds):2、loop count:100。所有的测试在单topic同一分区下进行,得到结果如下,
offset=16692 offset=16691 offset=16693 offset=16702 offset=16703 offset=16705 offset=16708 offset=16710 offset=16711 offset=16709 offset=16712 offset=16713 offset=16714 offset=16718 offset=16719 offset=16722 offset=16725 offset=16726 offset=16729 offset=16728 offset=16727 offset=16733 offset=16735 offset=16737 offset=16743 offset=16744 offset=16745 offset=16748 offset=16746 offset=16747 offset=16756 ......
有的如你所说是间隔确实拉大了,但是有的确实连续的。
另外,当我用非springboot配置的事务去执行kafka时,可以保证offset是连续的。
代码如下:
public static void main(String[] args) { // Producer 配置信息,应该配置在属性文件中 Properties props = new Properties(); //指定要连接的 broker,不需要列出所有的 broker,但建议至少列出2个,以防某个 broker 挂了 props.put("bootstrap.servers", "10.60.153.252:9092"); props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer"); props.put("transactional.id", "test.transactional.id"); // 需要设置 transactional.id // 创建 Producer Producer<string, string=""> producer = new KafkaProducer<string, string="">(props); // 初始化事务 producer.initTransactions(); try { // 开启事务 producer.beginTransaction(); for (int i = 0; i < 10; i++) { // 发送消息 producer.send(new ProducerRecord("wxy_test", "message "+i), new Callback() { public void onCompletion(RecordMetadata metadata, Exception exception) { if(exception != null) { System.out.println("send message i failed with " + exception.getMessage()); } else { // offset 是消息在 partition 中的编号,可以根据 offset 检索消息 System.out.println("message i sent to " + metadata.topic() + ", partition " + metadata.partition() + ", offset " + metadata.offset()); } } }); } // 提交事务 producer.commitTransaction(); } catch(KafkaException e) { // 终止事务 producer.abortTransaction(); } finally { producer.close(); } }
我是觉得如果真是spring-kafka集成事务导致这个offset间隔2,那就是个bug啊。很容易让人觉得是消息传递不正常。
spring的这个不太清楚了,不过事务会很影响性能。
你的答案